Enhanced Crystallinity of Epitaxial Graphene Grown on Hexagonal SiC Surface with Molybdenum Plate Capping

نویسندگان

  • Han Byul Jin
  • Youngeun Jeon
  • Sungchul Jung
  • Vijayakumar Modepalli
  • Hyun Suk Kang
  • Byung Cheol Lee
  • Jae-Hyeon Ko
  • Hyung-Joon Shin
  • Jung-Woo Yoo
  • Sung Youb Kim
  • Soon-Yong Kwon
  • Daejin Eom
  • Kibog Park
چکیده

The crystallinity of epitaxial graphene (EG) grown on a Hexagonal-SiC substrate is found to be enhanced greatly by capping the substrate with a molybdenum plate (Mo-plate) during vacuum annealing. The crystallinity enhancement of EG layer grown with Mo-plate capping is confirmed by the significant change of measured Raman spectra, compared to the spectra for no capping. Mo-plate capping is considered to induce heat accumulation on SiC surface by thermal radiation mirroring and raise Si partial pressure near surface by confining the sublimated Si atoms between SiC substrate and Mo-plate, which would be the essential contributors of crystallinity enhancement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of doping Graphene Quantum Dots with K, B, N, and Cl on its emitted spectrum

In this work, the effect of doping Graphene Quantum Dots (GQDs) on their emission spectra has been studied. First, graphene has been deposited on SiC substrate by using sublimation method. Second, doped-GQDs have been distributed on the surface of graphene via drop casting. The structure of the samples have been studied and characterized by X-ray diffraction (XRD), Scanning Electron Microscopy ...

متن کامل

Investigation of structural and electronic properties of epitaxial graphene on 3C–SiC(100)/Si(100) substrates

Graphene has been intensively studied in recent years in order to take advantage of its unique properties. Its synthesis on SiC substrates by solid-state graphitization appears a suitable option for graphene-based electronics. However, before developing devices based on epitaxial graphene, it is desirable to understand and finely control the synthesis of material with the most promising propert...

متن کامل

Micro-Raman and micro-transmission imaging of epitaxial graphene grown on the Si and C faces of 6H-SiC

Micro-Raman and micro-transmission imaging experiments have been done on epitaxial graphene grown on the C- and Si-faces of on-axis 6H-SiC substrates. On the C-face it is shown that the SiC sublimation process results in the growth of long and isolated graphene ribbons (up to 600 μm) that are strain-relaxed and lightly p-type doped. In this case, combining the results of micro-Raman spectroscop...

متن کامل

Wafer-scale epitaxial graphene growth on the Si-face of hexagonal SiC „0001... for high frequency transistors

Up to two layers of epitaxial graphene have been grown on the Si-face of 2 in. SiC wafers exhibiting room-temperature Hall mobilities up to 2750 cm2 V−1 s−1, measured from ungated, large, 160 200 m2 Hall bars, and up to 4000 cm2 V−1 s−1, from top-gated, small, 1 1.5 m2 Hall bars. The growth process involved a combination of a cleaning step of the SiC in a Si-containing gas, followed by an annea...

متن کامل

Micro-Raman analysis of the influence of hydrogen intercalation on the epitaxial graphene grown on 4H-SiC(0001) substrate K.Grodecki

It is commonly accepted that properties of epitaxial graphene (EG) grown on SiC are determined by interaction with substrate. It was found, that hydrogen intercalation of EG grown on SiC(0001) substrates by sublimation is a promising method to increase the mobility of carriers [1]. As verified by Raman spectroscopy [2] sublimation grown samples show much stronger interaction with the SiC substr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015